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While least-squares fitting procedures are commonly used in data analysis and
are extensively discussed in the literature devoted to this subject, the proper as-
sessment of errors resulting from such fits has received relatively little attention.
The present work considers statistical errors in the fitted parameters, as well as in
the values of the fitted function itself, resulting from random errors in the data.
Expressions are derived for the standard error of the fit, as a function of the inde-
pendent variable, for the general nonlinear and linear fitting problems. Additionally,
closed-form expressions are derived for some examples commonly encountered in the
scientific and engineering fields, namely, ordinary polynomial and Gaussian fitting
functions. These results have direct application to the assessment of antenna gain
and system temperature characteristics, in addition to a broad range of problems
in data analysis. The effects of the nature of the data and the choice of fitting func-
tion on the ability to accurately model the system under study are discussed, and
some general rules are deduced to assist workers intent on maximizing the amount
of information obtained from a given set of measurements.

I. Summary

The fitting of data of the form (xi, yi), i = 1, 2, · · · , N by a function y(x; a1, · · · , aM ) ≡ y(x;a), de-
pending on M coefficients, aj , and the independent variable x, is common in scientific and engineering
work. The procedure most often used for optimizing the coefficients in order to obtain the best fit is the
least-squares method, in which the quantity

χ2(a) =
N∑
i=1

[yi − y(xi;a)]2

σ2
i

is minimized, where σi is the standard deviation of the random errors of yi, which we assume to be
normally distributed.

The result of such a fitting procedure is the function y(x;a0), where a0 is the coefficient vector that
minimizes χ2(a), and the question arises as to what standard error to associate with the values of this
resulting fit. Standard references on statistics and data analysis give the well-known result that the
variances of the coefficients, aj , are given by the diagonal elements of the covariance matrix, C, i.e.,
σ2
aj = Cjj , where C is the inverse of the matrix H, variously referred to as the curvature or Hessian

matrix. While it is often useful to know what the parameter errors are, especially if the parameters
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themselves are related to some underlying physical model of the process under study, this does not tell
one directly what the error is in the values of the fitting function itself, and a knowledge of this error, which
is a function of the independent variable, is frequently of value in characterizing the system performance.

Lacking a general discussion of this in the literature, it seems that various workers assume a mean
error equal to either the rms value of the data errors or 1/

√
N times this. It is shown in the present

work, however, that for the general least-squares fit, the weighted mean value of the variance of the fit,
averaged over the data points x = xi, is given by

1
N

N∑
i=1

σ2
y(xi)
σ2
i

=
M

N

so that for constant data errors,

σ2
y =

1
N

N∑
i=1

σ2
y(xi) =

M

N
σ2

Thus, the mean standard error depends on the order of the fit, increasing as the square root of this value.

The error in the value of the fitted function, however, always depends on x, even when the standard
deviations of the data errors, σi, are all the same, independent of x. An analysis of these errors leads to
the general result that the variance of the value of the fitted function, resulting from the random data
errors, is given by

σ2
y(x) =

M∑
j=1

M∑
k=1

Cjkdj(x)dk(x) = d(x)TC d(x)

where [d(x)]j ≡ dj(x) = [∂y(x;a)/∂aj ]|a0 and T implies matrix transpose. For the special case of linear
fitting, where y(x; a) =

∑M
j=1 ajXj(x), this becomes

σ2
y(x) =

M∑
j=1

M∑
k=1

CjkXj(x)Xk(x) = x(x)TC x(x)

where x(x) is a column vector whose elements are Xj(x). An example of the application of this result to
a set of antenna aperture efficiency versus elevation data is shown in Figs. 1 through 4.

For the important class of basis functions corresponding to ordinary polynomials, Xj(x) = xj−1, it
is shown that if the data are uniformly distributed along the x-axis and the data standard errors are
constant, σi = σ, then simple, closed-form expressions can be derived for σ2

y(x). Thus, we find

η2 =
M−1∑
j=0

A
(M−1)
2j (N)ξ2j
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Fig. 1.  Quadratic fit to antenna aperture
efficiency versus elevation data showing the
confidence limits corresponding to 68.3 percent
(±σy(x)). The data standard errors were
constant and equal to 0.91 efficiency percent,
and the computed reduced χ2 was 1.06.
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Fig. 2.  The same as Fig. 1 except the fit and
limits are extended beyond the existing data to
illustrate the effect of the rapid increase in the
error of the fit.
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Fig. 3. The standard error of the fit
corresponding to Fig. 1 for the range of
elevation over which the data exist.
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Fig. 4.  The same as Fig. 3 except the range of
elevation is extended beyond the existing data.
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where η =
√
N([σy(x)]/σ), ξ = [(x−x)/σx], x = (1/N)

∑N
i=1 xi, σ

2
x = (1/N)

∑N
i=1 x

2
i−(1/N2)(

∑N
i=1 xi)

2,
and the coefficients A(M−1)

2j N are listed in Table 1 for the cases M = 2, 3, 4, corresponding to straight-
line, quadratic, and cubic fits. For the straight-line fit, the coefficients appearing in the above expression
are independent of the number of data points, N , while for the quadratic and cubic cases they become
independent for reasonable values of N , say, N > 10. These results are summarized graphically with the
set of universal error curves shown in Fig. 5.
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Table 1. The coefficients in the equation for the squared normalized standard
error of the fit for straight-line, quadratic, and cubic fits. a

M − 1 A0 A2 A4 A6

1 1 1 0 0

2
3(3N2−7)

4(N2−4)
− 6(N2+1)

4(N2−4)

5(N2−1)

4(N2−4)
0[

9
4

] [
− 3

2

] [
5
4

]
3

3(3N2−7)

4(N2−4)
5
12

9N4−12N2−61

(N2−4)(N2−9)
− 5

36
33N4−23N2−226

(N2−4)(N2−9)
175
108

(N2−1)2

(N2−4)(N2−9)[
9
4

] [
15
4

] [
− 55

12

] [
175
108

]
a The values for N →∞ are shown in brackets.

Fig. 5.  Universal, normalized error curves for
straight-line, quadratic, and cubic fits for
constant, normally distributed data errors, σi =
σ, with N uniformly distributed data points. The
symbols associated with each curve
correspond to the results of Monte Carlo
calculations carried out as a check (see
Appendix for details).
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As an example of a similar development for nonlinear fitting, the case of a Gaussian function given by

y(x;a) = a1 exp
[
−(x− a2)2

2a2
3

]

is treated exactly, and it is shown that for uniformly distributed data points located symmetrically relative
to the peak, and constant data errors,

η2 =

√
3
π
σte
−(ξσt)

2 (
3 + 4σ4

t ξ
4
)
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where σt = (σx/a3), while if the data errors are proportional to the value of the function, σ(x) ∝ y(x;a),
one finds

η2 = N

[
σy(x)
σ(x)

]2

=
9
4
− 3

2
ξ2 +

5
4
ξ4

where in both cases it is assumed that the number of data points, N , is reasonably large, of the order of
20 or more, and in the former case, it is also assumed that the spread of the data points, L, is greater
than about ±2a3. These results are shown graphically in Figs. 6 and 7.
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Fig. 6.  Universal, normalized error
curves for the general Gaussian function
y(x;a) = a1 exp[–(x–a2)2/2a3] for constant,
normally distributed data errors, σi = σ, with N
uniformly distributed data points centered on
the peak of the Gaussian. The symbols
associated with each curve correspond to the
results of Monte Carlo calculations carried out
as a check (see Appendix for details).
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Fig. 7.  The same as Fig. 6 except that the data
errors are now proportional to the function, σi =
σ(xi)     y(xi;a). The symbols associated with
each curve correspond to the results of Monte
Carlo calculations carried out as a check (see
Appendix for details).
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Another important aspect of the general least-squares fitting problem is the optimization of the sam-
pling during the taking of data, e.g., what spacing should one use along the x-axis and how many points
should one use in order to reduce the parameter errors to acceptable levels? Since the parameter errors
for the case of polynomial fits depend sensitively on the location of the origin of the x-scale, and in any
event the coefficients themselves are unlikely to have a fundamental significance in terms of an underlying
physical model of the process under study, we restrict ourselves to a consideration of Gaussian fits as an
example of some practical importance.

Thus, for uniformly and symmetrically distributed data points, we find the following. For constant
data errors σi = σ,
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N
σ2
a1

σ2
=

NS4

(2S0 + 1)S4 − 2S2
2

N
(σa2/a3)2

(σ/a1)2
=

1
2

N

δ2t S2

N
(σa3/a3)2

(σ/a1)2
=

1
2

N(2S0 + 1)
δ4t [(2S0 + 1)− 2S2

2 ]

where the sums S0, S2, and S4 are given by Eq. (A-7) of the Appendix and δ2t = [12/(N2 − 1)](σ2
x/a

2
3) =

[12/(N2−1)]σ2
t . The normalized errors

√
N(σa1/σ),

√
N [(σa2/a3)/(σ/a1)], and

√
N [(σa3/a3)/(σ/a1)] are

plotted as functions of the variable L/a3 for selected values of the number of data points, N, in Fig. 8.
In the limit N →∞ and L/a3 ≥ 4, the above normalized standard errors become

N
σ2
a1

σ2
=

3
2
√
π

L

a3

N
(σa2/a3)2

(σ/a1)2
=

2√
π

L

a3

N
(σa3/a3)2

(σ/a1)2
=

2√
π

L

a3

For data errors proportional to the function, σi = βy(x;a),

N
σ2
a1

a2
1

= β2A
(2)
0 (N) = β2 3(3N2 − 7)

4(N2 − 4)
→ 9

4
β2

as N →∞;

N
σ2
a2

a2
3

=
β2

σ2
t

independent of N ; and

N
σ2
a2

a2
3

=
β2

σ4
t

A
(2)
4 (N) =

β2

σ4
t

5(N2 − 1)
4(N2 − 4)

→ 5
4
β2

σ4
t

as N →∞.

II. Introduction

If one measures a single quantity N times in the presence of normally distributed, random errors,
then it is well known that the variance of the mean of these measurements is equal to the variance of
the measurements themselves divided by N , and in the absence of systematic errors, the mean value
approaches the true value of the quantity as the number of measurements increases without limit.
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Fig. 8.  Universal, normalized error curves for the three parameters of a Gaussian fit  for constant data errors,
σi = σ, as a function of the normalized x-axis interval L/a3 for various values of the number of data points, N:
(a) a1, (b) a2, and (c) a3.
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In the case of least-squares fitting of a given function to a given set of data that are likewise subject
to normally distributed, random errors, the resulting fit is the mean function corresponding to the data,
and the question arises as to what variance to assign to the errors of the values of this function. Here, two
related concerns arise. First, the fitting function will contain a certain number of parameters, M , and one
or more of these may be of interest in relation to a physical quantity whose value is sought. For example,
system noise temperatures may have been recorded as an antenna is scanned through a point source of
radiation, and one may be interested in the peak value or the half-width of the antenna pattern or both.
Or, one may have determined a series of system noise temperatures at different elevations and wish to
know what the maximum system noise temperature is and at what elevation it occurs. In each case, an
appropriate fitting function could be chosen so that one or more of the parameters involved corresponds
to the quantity or quantities of interest, and one would like to know, therefore, what standard error to
assign to the quantities so determined. Alternatively, one may want to know what the standard error is
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as a function of the independent variable, say declination or elevation in the two examples cited above.
In the remainder of this article, we will refer to this standard error of the value of the fitted function as
the error of the fit and designate it by the symbol σy(x).

The first instance considered above, namely, determining the error of one or more fitting parameters,
has a straightforward answer given in terms of the diagonal elements of the covariance matrix of the fit,
and is well known. Less well known, however, particularly among nonmathematicians, is the relationship
between this matrix and the error of the fit as a function of the independent variable. Some insight
into this problem can be obtained by examining Fig. 9, where we show the results of sequentially fitting
straight lines to a series of data sets generated by the same linear function, y = a1 + a2x, but with
different random errors, corresponding, however, to the same normal distribution, i.e., having the same
constant standard deviation, σ. Since each of these lines could have resulted from the same underlying
function, albeit with different probability, the ensemble of all possible lines defines the error statistics of
the particular fit actually obtained with the particular set of errors present during the data gathering,
i.e., the data errors actually obtained correspond to but one of the infinite number of sets that could have
resulted from the measurements. In the case shown in Fig. 9, one can see that the error of the fit tends to
be smaller toward the centroid of the data points and larger at the extremes. In fact, it is shown below
that the error curve in this case is actually a hyperbola and that the same general behavior is found
for higher-degree polynomials, albeit with differing functional dependence. The standard error of the fit,
σy(x), derived below is shown superimposed on the ensemble of straight lines in Fig. 9.

It is the purpose of this article to discuss the above errors and, in particular, to present results that
will permit one to determine the standard error of the fit as a function of the independent variable, as
well as to establish confidence limits for these errors.

1.6

0.8

0.4

0.0

y 
(x

)

1.2

0.0 0.2 0.4 0.6 0.8 1.0

x

Fig. 9.  Plot of 20 straight lines resulting from fits to
data generated from the same parent straight line but
with different random, normally distributed errors
having the same statistics.
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III. Least-Squares Fitting

The fitting of data of the form (xi, yi), i = 1, 2, · · · , N by a function y(x; a1, · · · , aM ) ≡ y(x;a) depend-
ing on M coefficients, aj , and the independent variable x is frequently used in scientific and engineering
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work, either to determine the most likely values of the fitting coefficients, which may relate to some
physically reasonable model of the process under study, or simply to permit the prediction of the most
likely value of the dependent variable y for a given value of x, including those values where no data exist.

While many techniques for finding optimum values of the fitting coefficients exist, the one most com-
monly used is the least-squares method, where the coefficients are determined by minimizing the quantity
χ2, given by

χ2(a) ≡
N∑
i=1

[yi − y(xi;a)]2

σ2
i

(1)

The variances σ2
i of the data values yi are assumed known, either from a knowledge of the experimental

errors involved in the measurements or from analysis of the data itself, and it is assumed that the errors
themselves are normally distributed. While this latter requirement is not essential for the derivations
that follow, it is nonetheless a common assumption, valid for most measurements, and permits one to
establish confidence limits, as discussed below.

This approach, also called the method of maximum likelihood, is described in numerous publications
and is the basis of many curve-fitting programs available in various software packages devoted to data
analysis. However, in spite of its widespread use, there are a number of aspects of the least-squares fitting
problem that are not often discussed in the literature on the subject, especially those having to do with the
proper evaluation and interpretation of errors. In the following section, the general linear, least-squares
problem, in which the fitting coefficients aj enter into the fitting function y(x;a) in a linear manner, is
formulated, and the solution for the coefficients is obtained. The purpose here is to establish the notation
and display the main results, rather than to provide a detailed derivation.1 This is followed by an analysis
of standard errors for the various quantities encountered and a section devoted to illustration of the main
ideas through consideration of some simple examples. Next, the general nonlinear, least-squares fitting
problem, in which the coefficients aj enter into the fitting function y(x;a) in a nonlinear way, is discussed,
and the standard errors once again analyzed. Two final sections provide a discussion of a related problem
involving errors of the difference between a function at two values of the argument and a general discussion
of the significance of the results.

IV. The Linear Least-Squares Problem

For the linear, least-squares problem, the fitting function y(x;a) may be written

y(x;a) ≡
M∑
j=1

ajXj(x) (2)

where Xj(x) are arbitrary basis functions of the independent variable, x, and the M coefficients, aj ,
are to be determined by minimizing χ2, as given by Eq. (1). This problem is most often framed in the
language of linear algebra, where the fitting function y(xi;a) is taken as an N -element column vector,
the coefficients aj as an M -element column vector, and the basis functions Xj(xi) are represented by an
N ×M matrix Xij , so that letting x = xi, Eq. (2) may be written

y(xi;a) =
M∑
j=1

Xijaj , i = 1, 2, · · · , N

1 The latter may be found in numerous sources, such as [1], which has been used as a guide to define the notation.
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or, in the matrix equation form, y = Xa.

Similarly, by defining the column vector bi ≡ (yi/σi) and the matrix Aij ≡ (Xij/σi), Eq. (1) may be
written

χ2 = (b−Aa)T (b−Aa) (3)

where T implies matrix transpose. Thus, the extremum condition for the coefficients,

∂

∂aj

(
χ2

)
= 0

results in the matrix equation

(
ATA

)
a = ATb

having the solution

a =
(
ATA

)−1
ATb = CATb (4a)

In the above, we have defined the matrix, H ≡ ATA, and its inverse, C. The symmetric M × M
matrix C = H−1 is called the covariance matrix and is central to the determination of standard errors,
as discussed below. In component form, Eq. (4a) may be written

aj = aj (y1, · · · , yN ) =
M∑
k=1

Cjk

N∑
i=1

yi
Xk(xi)
σ2
i

(4b)

where the dependence of the coefficients on the measured data has been made explicit in the notation.

Before proceeding with a discussion of errors and their evaluation, the question of the suitability of
the set of basis functions chosen at the outset should be addressed. It is shown in various treatises on
statistics and data analysis that the resulting fit to the function y(x;a) is meaningful if χ2, as given by
Eq. (1), is of the order of N −M ≡ ν, referred to as the number of degrees of freedom for the system
[2]. Since the quantity χ2 should be reasonably close to ν for a good fit, the related quantity χν ≡ χ/ν,
called the reduced χ2, is often used as a measure of the suitability of the chosen basis functions for fitting
to the given data, i.e., the condition χ2

ν ≈ 1 is taken to indicate that the fit is meaningful. For ν >> 1,
χ2, and hence the reduced χ2, is normally distributed, with the latter having a mean of 1 and a standard
deviation of

√
2/ν.

Figure 10 illustrates the significance of the quantity χ2
ν for the simple case of a polynomial fit. In

Fig. 10(a), the data clearly show a quadratic dependence on the independent variable, but an attempt
has been made to obtain a fit with a straight line. The formal application of Eq. (4a) results in the
computation of two coefficients for the line, but since at least three coefficients are obviously required to
give a reasonable fit to the given data, these coefficients are meaningless, both in terms of providing a
decent fit and in terms of the model used to represent the data, and this is manifest in the large value of
χ2
ν resulting from the fit. On the other hand, increasing the degree of the polynomial to 2 by adding a

quadratic term results in a much more reasonable-looking fit and a value of χ2
ν close to 1.
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Fig. 10.  The significance of the quantity χν  for a polynomial fit:  (a) a straight-line fit to data having a
quadratic dependence on the independent variable, illustrating the increase in χν resulting from a
poor fit to the data, and (b) a straight-line fit to straight-line data. In each case, the constant standard
deviation of the data errors, σ, is relative to the parent curve, a quadratic for Fig. 10(a) and a straight
line for Fig. 10(b) (see Section IV for discussion).
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It must be pointed out, however, that the value of χ2
ν that one obtains with a given fitting function

depends not only on the suitability of the function chosen but also on the values of the data errors
assumed, as is evident from the definition given by Eq. (1). Thus, in Fig. 10(b), where a straight-line fit
has been obtained for straight-line data, an accurate knowledge of the data errors, σi, leads to a reduced
χ2 of 0.9. However, had the data errors in Fig. 10(a) been overestimated, as could result with an overly
cautious experimenter, for example, then the calculated χ2

ν would be smaller than it should be, so that
one might end up with a value close to 1 as the result of a relatively poor fit and excessively large σi’s.
This points up the importance of properly assessing the data errors, a subject we will return to in a later
section.

V. Standard Errors

Since the coefficient values aj depend on the data values yi, as given by Eq. (4b), or its matrix
equivalent, Eq. (4a), the uncertainties in the coefficients depend on the uncertainties in the data values.
Thus,

δaj =
N∑
i=1

∂aj
∂yi

δyi =
N∑
i=1

M∑
k=1

Cjk
Xk(xi)
σ2
i

δyi

or, in matrix form,

δa = CAT δb

so that the covariance of aj and ak is given by

σ2
ajk
≡ 〈δajδak〉 =

M∑
n=1

M∑
m=1

CjnCkm

N∑
i=1

Xn(xi)
σ2
i

N∑
l=1

Xm(xl)
σ2
l

〈δyiδyl〉 (5a)
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where 〈 〉 indicates an ensemble average, giving the expectation value of the quantity in parenthesis. In
matrix form,

σ2
a ≡

〈
δaδaT

〉
=

〈
C

(
AT δb

) (
AT δb

)T
CT

〉
= CAT

〈
δbδbT

〉
ACT (5b)

where use has been made of the relation (AT δb)T = δbTA. Since the data errors δyi are assumed to be
statistically uncorrelated, 〈δyiδyl〉 = δilσ

2
i , where δil is the Kronecker delta.

Thus, 〈δbδbT 〉 = I, the identity matrix, so that Eq. (5b) becomes

σ2
a = C(ATA)CT = C (6a)

where the definition of the matrix C = (ATA)−1 [see Eq. (4a)] and its symmetry have been used. In
component form,

σ2
ajk

= Cjk (6b)

so that, unlike the data errors, the resulting errors in the coefficients are correlated, i.e., the off-diagonal
terms of the matrix C do not, in general, vanish. The diagonal elements give the variances of the
coefficients,

σ2
aj = Cjj (6c)

We are now in a position to determine the error in the value of the fitted function y(x) that results from
the errors in the coefficients aj .

From Eq. (2),

δy(x;a) =
M∑
j=1

δajXj(x)

so that the covariance σ2
y(x, x

′) ≡ 〈δy(x)δy(x′)〉 is given by

σ2
y(x, x

′) =
M∑
j=1

M∑
k=1

〈δajδak〉Xj(x)Xk(x′) =
M∑
j=1

M∑
k=1

CjkXj(x)Xk(x′) (7)

We note that this holds for any two values of the independent variable, not just the data points, and that
it is independent of the parameter values, aj .

For the special case x′ = x, we have the variance

σ2
y(x) =

M∑
j=1

M∑
k=1

CjkXj(x)Xk(x) = x(x)TC x(x) (8)
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where x(x) is a column vector whose elements are Xj(x). Since the above expression for σ2
y(x, x

′) does
not, in general, vanish for x′ 6= x, the errors in y(x;a) at two different values of x are correlated, unlike
the data errors. Some insight into the significance of the result given by Eq. (8) can be obtained by
considering the weighted mean value of σ2

y(x) averaged over all data points x = xi:

1
N

N∑
i=1

σ2
y(xi)
σ2
i

=
1
N

M∑
j=1

M∑
k=1

Cjk

N∑
i=1

Xij

σi

Xik

σi

From the definition of the matrix A, (Xij/σi) ≡ Aij , and hence the sum over i is just (ATA)kj = hkj =
(C−1)kj , thus giving us

1
N

N∑
i=1

σ2
y(xi)
σ2
i

=
1
N

M∑
j=1

M∑
k=1

Cjk(C−1)jk =
1
N

M∑
j=1

Ijj =
M

N
(9)

For the special case of constant data errors, independent of the value of x, σi = σ = constant, so that we
obtain

σ2
y =

1
N

N∑
i=1

σ2
y(xi) =

M

N
σ2 (10)

This result is analogous to the variance of the mean for the case of one value of x, where M = 1. Thus,
we see that, as a result of fitting to the function y(x), the variance of y, averaged over the data points, is
reduced by the ratio M/N relative to the constant data variance. This implies that the higher the order
of the fit required by the data to reduce χ2

ν to a value close to 1, the larger will be the resulting errors of
the values of the fitted function.

In the following section, we examine these results for the simple case of a straight-line fit to the data,
where an exact analysis enables one to bring out some of the more important consequences of the general
theory.

VI. Illustrative Examples

A. Fitting to a Straight Line

In order to illustrate some of the main consequences of the theory developed above, we first consider
the simplest linear, least-squares fitting problem, that of a straight line [3], for which M = 2. Then, the
basis functions are given by Xij = xj−1

i , j = 1, 2, and the fitting function by

y(xi;a) =
2∑
j=1

ajx
j−1
i = a1 + a2xi

The matrix H is, thus,

H =
[
h11 h12

h21 h22

]
=


∑N
i=1

1
σ2
i

∑N
i=1

xi
σ2
i∑N

i=1

xi
σ2
i

∑N
i=1

x2
i

σ2
i

 (11)

119



              

while its inverse, C, is

C =
1
∆

[
h22 −h12

−h21 h11

]

In the above, ∆ = h11h22 − h2
12 and h12 = h21, thus demonstrating the general result that both H and

C are symmetric.

For the special case where the data variances are independent of x, the diagonal terms of the latter,
which correspond to the variances of the constant and the linear coefficient, are given by

C11 = σ2
a1

=
σ2

N −
(∑N

i=1 xi

)2

/
∑N
i=1 x

2
i

C22 = σ2
a2

=
σ2∑N

i=1 x
2
i −

(∑N
i=1 xi

)2

/N

The variance of the data points is2

σ2
x =

1
N

N∑
i=1

x2
i −

1
N2

(
N∑
i=1

xi

)2

and if we choose the origin of the x-scale symmetrically, then the sum over xi vanishes so that we may
write the above in the simplified form

C11 = σ2
a1

=
σ2

N

C22 = σ2
a2

=
1
N

σ2

σ2
x

These results agree with our intuition in that the variance of the constant term is just the variance of
the mean of the data values, while the variance of the slope decreases from this as the spread of the data
points increases. From Eq. (8), the variance of the value of the fitted function, in this case a straight line,
becomes

σ2
y(x) =

2∑
j=1

2∑
k=1

Cjkx
j+k−2

= C11 + 2C12x+ C22x
2

=
1
∆

(
h22 − 2h12x+ h11x

2
)

(12)

2 For convenience, we are using a definition involving 1/N rather than 1/(N − 1).
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This is the equation of a conic section, for which the characteristic is

B2 − 4AC =
4h11

∆

where h11 =
∑N
i=1

(
1/σ2

i

)
and ∆ =

∑N
i=1

(
1/σ2

i

) ∑N
l=1

(
x2
l /σ

2
l

)
−

(∑N
i=1[xi/σi]

)2

. Letting 1/σi = ai and
xi/σi = bi, in the latter, and applying the Cauchy–Schwarz inequality,

N∑
i=l

a2
i

N∑
l=1

b2l ≥
(

N∑
i=1

aibi

)2

we see that B2−4AC ≥ 0, so that the equation for σy(x) is that of a hyperbola. Similarly, the discriminant
of the quadratic on the right-hand side of Eq. (12) is b2 − 4ac = −(4/∆) ≤ 0, so that the roots of the
equation σ2

y(x) = 0 are complex, i.e., the hyperbola is symmetric about the x-axis. The minimum value
of σ2

y(x) occurs at xmin = h12/h11, for which the variance is σ2
y|min = 1/h11. For constant data variances,

σi = σ, xmin = (1/N)
∑N
i=1 xi = x, and σ2

y|min = (1/h11) = (σ2/N), while at x = x± σx,

σ2
y (x± σx) =

2
h11

= 2
σ2

N
= σ2

y (13)

showing that the mean value of σ2
y(x) occurs at one standard deviation from the mean value of x.

If the values of the matrix elements hjk given by Eq. (11) are substituted into Eq. (12) for the special
case σi = σ, it may be transformed into the simple dimensionless form

η2 = 1 + ξ2 (14)

where η =
√
N([σy(x)]/σ), ξ = ([x−x]/σx). The universal error curve represented by Eq. (14) is plotted,

along with the higher-degree polynomial error curves discussed below, in Fig. 5.

B. More General Fits

The case of a general polynomial fit may be treated by the same methods used above, but the algebra
becomes progressively more difficult for M > 2. However, one can see that for higher-degree polynomial
fits, the general behavior illustrated by the straight-line case dealt with above is also found. For example,
since the highest power present in the expansion for σ2

y(x) is 2(M − 1) while the fit itself is of degree
M − 1, the equation for σy(x) corresponds to a double-branched function whose asymptotic behavior for
|x − x| >> σx follows the same power law as the fit itself. Thus, a quadratic fit yields an error that
increases asymptotically as the second power of |x− x|, a cubic as the third power, etc. The implication
of this is that higher-degree fits become less reliable than ones of lower degree as one moves away from
the center of the given data.

It is shown in the Appendix that if the data variances are constant, and the data points are uniformly
distributed along the x-axis, then the variance of the fitted function σ2

y(x) is a symmetric function of x−x,
i.e., σy(x + ∆x) = σy(x − ∆x). Furthermore, it is possible to express σ2

y(x) in the same dimensionless
form as for the straight-line case for the higher-degree polynomial fits. Thus, for the general polynomial
of degree M − 1, a set of universal, normalized error curves exists, the square of which is given by
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η2 =
M−1∑
j=0

A
(M−1)
2j (N)ξ2j

where

η =
√
N
σy(x)
σ

ξ =
x− x
σx

x =
1
N

N∑
i=1

xi

σ2
x =

1
N

N∑
i=1

x2
i −

1
N2

(
N∑
i=1

xi

)2

While the coefficients appearing in the above expression generally depend on the number of data points,
N , they do not for the straight-line case. Furthermore, for values of N exceeding that required for a given
fit by some reasonable number, say 5, they become essentially constant for polynomial fits of all degrees.
These results are summarized in Table 1, which lists the coefficients A(M−1)

2j (N), including their limiting
values for N → ∞, for straight-line, quadratic, and cubic fits, corresponding to M = 2, 3, and 4. The
corresponding normalized standard deviations of the fit, η, are plotted in Fig. 5.

In the general case where the basis functions are not polynomials, the standard errors are not constant,
or the data points are not uniformly distributed, one must use Eq. (8) to determine the behavior of the
error as a function of the independent variable, so that this equation takes on fundamental importance in
determining confidence limits resulting from a given fit to a given set of data. An example of the direct
use of this equation is shown in Figs. 1 through 4, where a set of antenna aperture efficiency data has
been fitted to a quadratic function. The figures illustrate the behavior of the standard error of the fit
over a wide range of elevation angles, including those beyond the existing data. We have assumed from
the outset that the data errors are normally distributed, and under these circumstances, it may be shown
that the errors in the coefficients and, consequently, also in the fitting function y(x) are also normally
distributed, so that Gaussian statistics may be used to determine these limits.

As a final comment, it should be observed that the above analysis assumes that the fit is meaningful,
i.e., that χ2

ν ≈ 1, and this is crucial to a proper interpretation of the fitting errors. If the fitting function
has been improperly chosen, one may not assume that the errors follow Eq. (8) and, equally important,
if the data errors have been incorrectly estimated, one may not assume that the fit is meaningful even if
χ2
ν ≈ 1, since these errors appear directly in the expression for χ2 [Eq. (1)]. It is, therefore, of the utmost

importance to have a reasonably accurate estimate of the actual data errors if one is to have reasonable
estimates of the resulting fitting errors.

VII. The Nonlinear Least-Squares Problem

The linear, least-squares problem is characterized by Eqs. (2) and (3), which, respectively, express the
fitting function y(x;a) as a linear and χ2 as a quadratic function of the coefficients aj , thus allowing an
explicit solution to be obtained for the latter, as shown in Section IV. In the nonlinear case, no such
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simple formulation is possible, and one is led to an iterative procedure for the solution that starts with
an assumed solution vector a and evolves so as to produce values closer and closer to the value a0, which
minimizes χ2. The iteration is based on the assumption that if a is sufficiently close to a0, then y(x;a)
may still be expressed as a linear and χ2 as a quadratic function of the coefficients. This assumption
rests on using Taylor expansions for these quantities and retaining only the leading terms. Thus, for a
near a0, we may write

y(x;a) = y (x;a0) +
M∑
j=1

∂y(x;a)
∂aj

∣∣∣∣∣∣
a0

(aj − a0j)

= y (x;a0) + (a− a0)
T d (x;a0) (15)

where [d (x;a0)]j ≡ dj (x;a0) = (∂y(x;a)/∂aj)|a0
. Similarly,

χ2(a) = χ2
min +

1
2

M∑
j=1

M∑
k=1

∂2χ2(a)
∂aj∂ak

∣∣∣∣∣
a0

(aj − a0j) (ak − a0k)

= χ2
min + (a− a0)

T H (a0) (a− a0) (16)

where χ2
min = χ2(a0), and

hjk(a0) =
1
2

∂2χ2(a)
∂aj∂ak

∣∣∣∣
a0

=
N∑
i=1

1
σ2
i

∂y(xi;a)
∂aj

∣∣∣∣
a0

∂y(xi;a)
∂ak

∣∣∣∣
a0

.

Note that the gradient term vanishes in the above expression for χ2(a) since it is evaluated at the
minimum. Also, the final expression for hjk(a0) involves only first derivatives because of the assumed
form for y(x; a) given by Eq. (15). If we now define

Aij(a0) =
1
σi

∂y(xi; a)
∂aj

∣∣∣∣
a0

=
dij(a0)
σi

then H(a0) = ATA just as in the linear case and, hence, the derivation leading up to Eq. (6) carries
through just as before, giving us

σ2
a(a0) = C(a0) = H−1(a0)

Also, the derivation leading up to Eq. (8) follows through as before when dj(x;a0) is substituted for
Xj(x), giving the result
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σ2
y(x;a0) =

M∑
j=1

M∑
k=1

Cjk(a0)dj(x;a0)dk(x;a0)

= d(x;a0)TC(a0)d(x;a0)

as does that leading up to Eqs. (9) and (10).

Thus, the results

1
N

N∑
i=1

σ2
y(xi)
σ2
i

=
M

N

and

σ2
y =

1
N

M∑
i=1

σ2
y(xi) =

M

N
σ2

continue to hold in the general, nonlinear case so that with the appropriate definitions for the quantities
involved, the nonlinear and linear, least-squares problems lead to the same formal results. Note, however,
that all of the quantities now explicitly depend on the solution vector, a0.

Furthermore, within the assumptions made in writing down Eqs. (15) and (16), i.e., assuming that
the deviations δaj are not so large as to invalidate the linear and quadratic approximations involved, one
may assume that all of the distributions are normal and, hence, that the usual confidence limits derived
from such distributions hold. Thus, the limits for a confidence level of 68.3 percent are ±σX , those for
95.4 percent ±2σX , for 99.73 percent ±3σX , etc., where X corresponds to either a or y. As an example
of the application of the above theory to a specific case, the nonlinear fitting problem for the Gaussian
function

y(x;a) = a1 exp
[
−(x− a2)2

2a2
3

]

is treated in the Appendix, where it is shown that the normalized variance of the fit for the case of
constant data errors is given by

η2 =

√
3
π
σte
−(ξσt)

2 (
3 + 4σ4

t ξ
4
)

under the assumptions that the number of data points is reasonably large, say 20 or more, that they are
uniformly and symmetrically distributed about the peak x = a2, and that they extend out to a distance
of x− a2 = ±2a3 or more. In the above expression,

η =
√
N
σy(x)
σ

and
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σt =
σx
a3

where σ2
x = (1/N)

∑N
i=1 x

2
i−(1/N2)(

∑N
i=1 xi)

2, as before. This equation is plotted in Fig. 6 for σt = 2/
√

3
and 4/

√
3, corresponding to L/a3 = 4 and 8, where L is the full range of the data points.

If the data errors, instead of being constant, are proportional to the value of the function, σi = σ(xi) ∝
y(xi;a), then the normalized error of the fit is given by

η2 = A
(2)
0 (N) +A

(2)
2 (N)ξ2 +A

(2)
4 (N)ξ4

where now η =
√
Nσy(x)/σ(x) and the only restriction on the data points is that they be uniformly

and symmetrically distributed relative to the peak. The coefficients A(2)
2j (N) appearing in the above

expression are the same as those found for the quadratic polynomial fit, and their values, including those
for N →∞, are give in Table 1. The equation is plotted in Fig. 7.

The functional dependence of the parameter errors, σaj , on the data interval, L, and the number of
points, N , is frequently of importance in determining an optimum sampling strategy, and this is derived
in Section V of the Appendix, with the results for constant data errors plotted in Fig. 8.

VIII. A Related Problem

It is sometimes of interest to determine the variance of the difference of the fit at two points x1 and
x2,∆y(x1, x2) = y(x1;a)− y(x2;a). Thus, from Eq. (13), we have

δ [∆y(x1, x2)] = δy(x1;a)− δy(x2; a)

=
M∑
j=1

[dj(x1)− dj(x2)] δaj

so that

σ2
∆1,2
≡

〈
{δ [∆y(x1, x2)]}2

〉
=

M∑
j=1

M∑
k=1

〈δajδak〉(d1j − d2j)(d1k − d2k)

=
M∑
j=1

M∑
k=1

Cjk(d1j − d2j)(d1k − d2k)

For the case of a polynomial expansion, dij = Xij = xj−1
i , so

σ2
∆1,2

=
M∑
j=1

M∑
k=1

Cjk

(
xj−1

1 − xj−1
2

) (
xk−1

1 − xk−1
2

)

and, hence, using the results of Section VI, we obtain
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σ2
∆1,2

= C22(x1 − x2)2 = σ2
a2

(x1 − x2)2

for a straight-line fit. For constant data errors,

σ2
∆1,2

=
1
N

σ2

σ2
x

(x1 − x2)2

IX. Discussion

In applying the above results, it is important to be aware that the variances of the fit obtained in
Eq. (8) and related equations are valid only if one is reasonably confident of the fit itself. If the fitting
function being considered does not accurately represent the data, then one must find one that does before
attempting to assign appropriate errors, and the best test for this is the value of the reduced χ2. In
this connection, it is worth mentioning that while fits using ordinary polynomials are often used for
convenience and simplicity, they seldom correspond to physical reality. They may approximate a given
physical process reasonably well over a limited range of the independent variable x, but one should exercise
care when attempting to go beyond this, because the hallmark of these functions is that they diverge for
large absolute values of x, and the variances of the fit derived for the polynomials in the Appendix and
discussed in Section VI offer a warning of this by doing likewise in the region beyond the existing data.

Clearly, one is better off with a fitting function that reflects the underlying physics reasonably well, but
of course it is not always possible to find such a function, especially if the system being studied has a large
number of basic processes going on at the same time, some of which may be unknown to the observer.
A good example is trying to determine the microwave spectrum of a complex astrophysical source of
radiation, such as a galaxy, or even a planet, where not only is the physics not known with certainty,
but also the data have typically been gathered by many different workers using different measuring
systems with different accuracies at different frequencies. Under such circumstances, one cannot be
sure that some hidden absorption or emission feature has not gone undetected because of a gap in the
measurements and knowledge, over some small range of frequencies, possibly at one of the extremes
of the existing measurements. A case in point is the HII region DR21, where early measurements by
workers identified the basic radiation process as thermal bremsstrahlung and, on that basis, predicted its
microwave spectrum out to frequencies of 100 GHz, unaware of the fact that the region was surrounded
by a dust cloud that converted intense visible and ultraviolet radiation to near-infrared radiation, which
resulted in significant departure from the predicted spectrum at frequencies as low as 85 GHz. The
existing measurements of the time did not extend beyond 31.4 GHz, so considerable extrapolation was
involved, even on a logarithmic scale.

Spectral determinations are particularly treacherous, especially at the extremes of the data, because,
in principle, the range of the independent variable, frequency, is open at both ends, thus precluding a
knowledge of the asymptotic behavior. At the opposite extreme, however, one may be dealing with a
relatively uncomplicated situation involving a finite and known range for the independent variable and a
system that can reliably be modeled in a fairly simple manner. In such a case, it pays to determine the
errors as accurately as one can, i.e., to make maximum use of the given data by applying the variance of
the fit theory discussed above.

The question of how best to determine the actual data errors is not an easy one. If the measuring
system and the system under study are simple, it may be possible to determine these from first principles,
combined with the performance data for the instrumentation used, and it might further be possible to
check this by a series of measurements on a known system. Often, however, one does not have such a
simple circumstance to deal with, nor does one have the time to make the requisite test measurements.
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In this case, one might obtain a reasonable estimate of the data errors by breaking up the range of the
independent variable into a small number of segments over each of which the functional dependence may be
reasonably well approximated by a quadratic, and fitting each of these restricted data sets by a quadratic
assuming σ = 1. Then, χ2

ν(σ = 1) = (1/ν)
∑N
i=1[yi − y(xi)]2 and χ2

ν(σ) = (1/νσ2)
∑N
i=1[yi − y(xi)]2 ≈ 1

so that σ2 ≈ χ2
ν(σ = 1). A plot of the resulting values of σ as a function of the mean value of the

independent variable for each segment would then provide an estimate for σ(x), which would in turn
permit an assignment of the appropriate values for the σi’s for the final overall fit. In the final analysis,
as always, common sense and experience must be the ultimate guide in determining how best to proceed.
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Appendix

Mathematical Details

I. Symmetry Considerations in Polynomial Fits

If the basis functions chosen are the ordinary polynomials and constant data errors are assumed, the
curvature matrix elements are given by

hjk =
1
σ2

N∑
i=1

xj+k−2
i

Furthermore, if the data points are uniformly distributed, we may choose our y-axis so that
∑N
i=1 x

j+k
i = 0

for j + k = odd integer.3 Then, the curvature matrix has the general appearance

H =


h11 0 h13 0 · · ·
0 h22 0 h24 · · ·
h13 0 h33 0 · · ·
0 h24 0 h44 · · ·
...

...
...

...
. . .

 (A-1)

where the symmetry has been explicitly indicated, i.e., hjk = hkj . The elements of the covariance matrix
are given by

Cjk =
1
∆
× cofactor(hjk)

where ∆ = det H and use has been made of the symmetry of H. By an inductive process, one can show
that if j + k is an odd integer, then the cofactor matrix will, for a given rank of the curvature matrix,
have n + 1 rows of identical sequences of zero and nonzero elements, where the number of the latter in
a given such row is n. Thus, if the rank of H is 4 or 5, n = 1, if it is 6 or 7, n = 2, etc. In view of this
structure of the cofactor matrix, one may perform a Gauss elimination on these rows and thereby end up
with one row consisting of nothing but zeroes, in consequence of which the corresponding cofactor and,
hence, also the covariance matrix element, Cjk, vanish for j + k equal to an odd integer. The covariance
matrix, therefore, has the same structure as the curvature matrix, so that Eq. (8) for the variance of the
fit becomes σ2

y(x) =
∑M
j=1

∑M
k=1 Cjkx

j+k−2 for j + k = even integer. Hence, σ2
y(x) is an even function of

x, i.e., the variance of the fit for polynomials is symmetric about the mean of the data points if these are
uniformly distributed and the data errors are constant.

II. Polynomial Fits for M = 2, 3, and 4 With Constant Data Errors and Uniformly
Distributed Data Points

A. Straight-Line Fits

While straight-line fits have already been dealt with in Section VI, the simplicity of this case makes
it a useful starting point for discussion of the above ideas. Thus, assuming constant data errors and

3 The y-axis location affects the covariance matrix, but not the variance of the fit.

128



          

uniformly distributed data points, we may introduce the variable x′ = x− x, where x = (1/N)
∑n
i=1 xi,

in terms of which the curvature and covariance matrices have the sparse form shown in Eq. (A-1) above.
Then, for M = 2, we have

H =
[
h11 0
0 h22

]

so that ∆ = det H = h11h22, and

C =


1
h11

0

0
1
h22

 =
σ2

N

 1 0

0
1
σ2
x



where σ2
x = (1/N)

∑N
i=1(xi − x)2 = (1/N)

∑N
i=1 x

′2
i . Substituting into Eq. (8), we thus have

σ2
y(x) =

σ2

N
[1 x′]

 1 0

0
1
σ2
x

 [
1
x′

]
=
σ2

N

[
1 +

(
x′

σx

)2
]

This may be written in the normalized form

η2 = 1 +
(
x′

σx

)2

= 1 + ξ2 (A-2)

where η =
√
N([σy(x)]/σ) and ξ = ([x− x]/σx), in agreement with the results of Section VI.A [Eq. (14)].

Note that while the above symmetric result has been obtained under the restrictive condition that
the data points are uniformly distributed, no such assumption was made in the original derivation given
in Section VI, i.e., as long as the data variances are constant, the data points can be distributed in any
manner and the result of Eq. (A-2) still holds. As we shall see in what follows, this is a special feature of
the straight-line fit that does not carry over to polynomial fits of higher degree.

B. Quadratic Fits

The general form for the variance of the fit for the quadratic case is

σ2
y(x) = [1 x′ x′2]

C11 0 C13

0 C22 0
C13 0 C33

  1
x′

x′2

 (A-3)

where x′ = x− x as before, and

H =

h11 0 h13

0 h22 0
h13 0 h33


Inverting this, the matrix elements of C are
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C11 =
h33

h11h33 − h2
13

C13 = − h13

h11h33 − h2
13

C22 =
1
h22

C33 =
h11

h11h33 − h2
13



(A-4)

where h11 = N/σ2, h13 = h22 = (1/σ2)
∑N
i=1 x

′2
i = N(σ2

x/σ
2), and h33 = (1/σ2)

∑N
i=1 x

′4
i . The last term

may be evaluated by making use of the uniformity of the distribution of the points. Thus, designating
the spacing between adjacent points by δ, we have

N∑
i=1

x′4i = 2δ4
(N−1)/2∑
n=1

n4 =
δ4N

240
(N2 − 1)(3N2 − 7)

where the last step has used the relation

n∑
k=1

k4 =
1
30
n(n+ 1)(2n+ 1)(3n2 + 3n− 1)

from [4, Eq. (0.121.4)], and for definiteness we have assumed an odd number of points.4 Similarly,
applying the relation

∑n
k=1 k

2 = (1/6)n(n + 1)(2n + 1) to the expression for h22 above, we obtain the
following relationship between the point spacing, δ, and the standard deviation of the data points, σx:

δ2 =
12

N2 − 1
σ2
x

so that we may write h33 in the form

h33 =
3(3N2 − 7)
5(N2 − 1)

(
N
σ4
x

σ2

)

Substituting these results into Eq. (A-3), we finally obtain

η2 =
1

4(N2 − 4)
[
3(3N2 − 7)− 6(N2 + 1)ξ2 + 5(N2 − 1)ξ4

]

= A
(2)
0 (N) +A

(2)
2 (N)ξ2 +A

(2)
4 (N)ξ4

4 The results obtained do not depend on whether N is even or odd.
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where ξ = ([x− x]/σx), as before. In the limit as N →∞, and this limit is approached quite rapidly as
N increases, this reduces to the simple fourth-degree polynomial

η2 =
9
4
− 3

2
ξ2 +

5
4
ξ4

C. Cubic Fits

For the cubic case, the variance of the fit has the form

σ2
y(x) = [1 x′2 x′4 x′6]


C11 0 C13 0
0 C22 0 C24

C13 0 C33 0
0 C24 0 C44




1
x′2

x′4

x′6



= C11 + (C22 + 2C13)x′2 + (2C24 + C33)x′4 + C44x
′6 (A-5)

and the curvature matrix is of the form

H =


h11 0 h13 0
0 h22 0 h24

h13 0 h33 0
0 h24 0 h44



Inverting this, we have

C11 =
h33

h11h33 − h2
13

C13 = − h13

h11h33 − h2
13

C22 =
h44

h22h44 − h2
24

C24 = − h24

h22h44 − h2
24

C33 =
h11

h11h33 − h2
13

C44 =
h22

h22h44 − h2
24

where
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h11 =
N

σ2

h13 = h22 =
1
σ2

N∑
i=1

x′2i = N
σ2
x

σ2

h24 = h33 =
1
σ2

N∑
i=1

x′4i =
3(3N2 − 7)
5(N2 − 1)

N
σ4
x

σ2

h44 =
1
σ2

N∑
i=1

x′6i =
9(3N2 − 18N2 + 31)

7(N2 − 1)2
N

σ6
x

σ2

and the last term has been evaluated with the use of the formula
∑n
k=1 k

6 = (1/42)n(n+ 1)(2n+ 1)(3n4

+ 6n3 − 3n+ 1), taken from [4, Eq. (0.121.6)].

Substituting these results into Eq. (A-5), we obtain

η2 = A
(3)
0 +A

(3)
2 ξ2 +A

(3)
4 ξ4 +A

(3)
6 ξ6

where the coefficients are given by

A
(3)
0 =

3(3N2 − 7)
4(N2 − 4)

A
(3)
2 =

5
12

9N4 − 12N2 − 61
(N2 − 4)(N2 − 9)

A
(3)
4 = − 5

36
33N4 − 23N2 − 226
(N2 − 4)(N2 − 9)

A
(3)
6 =

175
108

(N2 − 1)2

(N2 − 4)(N2 − 9)

thus giving us the limiting result η2 = (9/4) + (15/4)ξ2 − (55/12)ξ4 + (175/108)ξ6 as N →∞.

III. Gaussian Fits

A. Constant Data Errors

The general Gaussian fitting function is given by

y(x;a) = a1 exp
[
−(x− a2)2

2a2
3

]
= a1 exp

(
−t2
2

)

where t = (x− a2)/a3. Thus, the required derivatives are

132



       

d1(x) =
∂y

∂a1
= exp

−t2
2

d2(x) =
∂y

∂a2
=
a1t

a3
exp
−t2
2

d3(x) =
∂y

∂a3
=
a1t

2

a3
exp
−t2
2


(A-6)

For σ = constant, hjk =
∑N
i=1AijAik = (1/σ2)

∑N
i=1 dj(xi)dk(xi), so the elements of the curvature

matrix are given by

h11 =
1
σ2

N∑
i=1

exp
(
−t2i

)

h12 =
r

σ2

N∑
i=1

ti exp
(
−t2i

)

h13 =
r

σ2

N∑
i=1

t2i exp
(
−t2i

)

h22 =
r2

σ2

N∑
i=1

t2i exp
(
−t2i

)

h23 =
r2

σ2

N∑
i=1

t3i exp
(
−t2i

)

h33 =
r2

σ2

N∑
i=1

t4i exp
(
−t2i

)

where r = a1/a3.

We see from this that unless the data points are located symmetrically relative to the peak of the
Gaussian, all six matrix elements will be nonzero, and the resulting variance of the fit will be a function
of the amount of offset. Therefore, we consider only the simplest, and in fact most common, case where
such a symmetry exists, at least approximately, and furthermore assume that the data points are uniformly
distributed, as in the polynomial case. Then h12 = h23 = 0, and the curvature and covariance matrices
have the same form dealt with above [see Eq. (A-1)]. Thus, proceeding as in the polynomial case, we
have
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h11 =
1
σ2

(2S0 + 1)

h13 =
2
σ2
δ2t rS2

h22 =
2
σ2
δ2t r

2S2

h33 =
2
σ2
δ4t r

2S4



(A-7)

where S0 =
∑(N−1)/2
i=1 exp(−i2δ2t ), S2 =

∑(N−1)/2
i=1 i2 exp(−i2δ2t ), S4 =

∑(N−1)/2
i=1 i4 exp(−i2δ2t ), and δ2t =

(12/[N2 − 1])(σ2
x/a

2
3) = (12/[N2 − 1])σ2

t is the spacing between points, normalized with respect to the
standard deviation of the Gaussian function, a3, and σt = σx/a3.

The above sums, which depend on δt, cannot be expressed in closed form in the general case, but in
the limit as N →∞ and δt → 0, they may be expressed in terms of integrals. Thus, if we further restrict
ourselves to the most useful case where the data points extend out to at least two standard deviations of
the Gaussian, i.e., L ≥ 4a3, where L is the full width of the interval of the data points along the x-axis,
then we find

lim
N,σx→∞

δtS0 =
√
π

2

lim
N,σx→∞

δ3t S2 =
√
π

4

lim
N,σx→∞

δ5t S4 = 3
√
π

8


(A-8)

From the general form of the covariance matrix for symmetric data points with M = 3 [see Eq. (A-3),
for example] and the derivatives given by Eq. (A-6), the variance of the fit becomes

σ2
y(x) = dT (x)Cd(x) = e−t

2 [
1 rt rt2

] C11 0 C13

0 C22 0
C13 0 C33

  1
rt
rt2



= e−t
2 [
C11 + (C22r + 2C13) rt2 + C33r

2t4
]

Substituting Eqs. (A-7) and (A-8) into Eq. (A-4), we finally obtain

η2 =

√
3
π
σte
−(ξσt)

2 (
3 + 4σ4

t ξ
4
)

where (L∞/a3) ≡ limN→∞(L/a3) = limN→∞(L/σx)σt = 2
√

3σt has been used.
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B. Data Errors Proportional to y (x;a)

When the dependent variable extends over a very large range, as in the case of the Gaussian function, it
often happens that the measurement error scales with the measurement itself, at least in a piecewise sense,
due to the changing of instrument ranges as the variable values change. Thus, letting σi = βy(xi; a), the
curvature matrix elements become

hjk =
1
β2

N∑
i=1

dj(xi)dk(xi)
y2(xi;a)

and using Eq. (A-6) for the derivatives, we have

h11 =
N

(a1β)2

h12 =
r

(a1β)2

N∑
i=1

ti

h13 =
r

(a1β)2

N∑
i=1

t2i

h22 =
r2

(a1β)2

N∑
i=1

t2i

h23 =
r2

(a1β)2

N∑
i=1

t3i

h33 =
r2

(a1β)2

N∑
i=1

t4i



(A-9)

These are of the same form as was found for the case of the quadratic fit, so the derivation follows through
in much the same way, giving the result

σ2
y(x) =

(a1β)2

N
e−t

2

[
A

(2)
0 (N) +A

(2)
2 (N)

(
t

σt

)2

+A
(2)
4 (N)

(
t

σt

)4
]

where we have again assumed symmetric data, and the coefficients that appear are the same ones appear-
ing in the quadratic fit. This may be simplified by noting that a1β = a1σi/y(xi;a) = a1σ(x)/y(x;a) =
σ(x)et

2/2 so that we finally obtain η2 = A
(2)
0 (N)+A

(2)
2 (N)ξ2 +A

(2)
4 (N)ξ4, where η =

√
N([σy(x)]/[σ(x)])

and t/σt = (x− x)/σx = ξ, in exact agreement with the expression for the quadratic fit.

IV. Monte Carlo Simulations

As a check on the above derivations, a series of Monte Carlo simulations has been carried out for the
various cases treated by creating ensembles of data of the form yni = y(xi;a) + rn(xi), where rn(xi)
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is a zero-mean, normally distributed random variable having variance σi, fitting the function y(x;a) to
each of these to obtain an ensemble of fitted functions y(x;an), and computing the variance σ2

y(xm) =
(1/Ne)

∑Ne
n=1 y

2(xm;an)− [(1/Ne)
∑Ne
n=1 y(xm;an)]2 for a series of values of xm, where Ne is the number

of ensemble members, so that comparisons can be made with the theoretical results. These are shown in
Figs. 5 through 7, and it can be seen that the agreement is excellent.

V. Parameter Errors for Gaussian Fitting Functions

The results obtained above permit the calculation of standard errors for the parameters aj appearing
in the various cases treated, i.e., σ2

aj = Cjj . However, since these errors will depend on the location of
the y-axis, the results are not of general interest unless the data are located symmetrically relative to
the fitting function, as, for example, in the case of the Gaussian function. This function is of sufficient
interest to warrant a separate discussion, which we present below for the two cases considered earlier,
namely, constant data errors and data errors proportional to the function.

A. Constant Data Errors

When Eq. (A-7) is substituted into Eq. (A-4), the following expressions are obtained for the normalized
standard errors:

N
σ2
a1

σ2
=

NS4

(2S0 + 1)S4 − 2S2
2

N
(σa2/a3)2

(σ/a1)2
=

1
2

N

δ2t S2

N
(σa3/a3)2

(σ/a1)2
=

1
2

N(2S0 + 1)
δ4t [(2S0 + 1)− 2S2

2 ]

where the sums S0, S2, and S4 are given by Eq. (A-7), and δ2t = (12/[N2− 1])(σ2
x/a

2
3) = (12/[N2− 1])σ2

t ,
as before. These results are valid for any odd value of N ≥ 3, and in Fig. 8 we show the general behavior
as a function of the variable L/a3 = (N − 1)δt for N =3, 5, 7, 9, and 11. In the limit N → ∞ and
L/a3 ≥ 4, the above normalized standard errors become

N
σ2
a1

σ2
=

3
2
√
π

L

a3

N
(σa2/a3)2

(σ/a1)2
=

2√
π

L

a3

N
(σa3/a3)2

(σ/a1)2
=

2√
π

L

a3

B. Proportional Data Errors

Substituting Eq. (A-9) into Eq. (A-4), we obtain the following normalized standard errors:
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N
σ2
a1

a2
1

= β2A
(2)
0 (N) = β2 3(3N2 − 7)

4(N2 − 4)
→ 9

4
β2

as N →∞;

N
σ2
a2

a2
3

=
β2

σ2
t

independent of N ; and

N
σ2
a2

a2
3

=
β2

σ4
t

A
(2)
4 (N) =

β2

σ4
t

5(N2 − 1)
4(N2 − 4)

→ 5
4
β2

σ4
t

as N →∞, where β is the error proportionality constant, i.e., σi = βy(xi;a).
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